Greenland Ice Sheet Surface Air Temperature Variability: 1840–2007*

نویسندگان

  • JASON E. BOX
  • LEI YANG
  • DAVID H. BROMWICH
  • LE-SHENG BAI
چکیده

Meteorological station records and regional climate model output are combined to develop a continuous 168-yr (1840–2007) spatial reconstruction of monthly, seasonal, and annual mean Greenland ice sheet nearsurface air temperatures. Independent observations are used to assess and compensate for systematic errors in the model output. Uncertainty is quantified using residual nonsystematic error. Spatial and temporal temperature variability is investigated on seasonal and annual time scales. It is found that volcanic cooling episodes are concentrated in winter and along the western ice sheet slope. Interdecadal warming trends coincide with an absence of major volcanic eruptions. Year 2003 was the only year of 1840–2007 with a warm anomaly that exceeds three standard deviations from the 1951–80 base period. The annual whole ice sheet 1919–32 warming trend is 33% greater in magnitude than the 1994–2007 warming. The recent warming was, however, stronger along western Greenland in autumn and southern Greenland in winter. Spring trends marked the 1920s warming onset, while autumn leads the 1994–2007 warming. In contrast to the 1920s warming, the 1994–2007 warming has not surpassed the Northern Hemisphere anomaly. An additional 1.08–1.58C of annual mean warming would be needed for Greenland to be in phase with the Northern Hemispheric pattern. Thus, it is expected that the ice sheet melt rates and mass deficit will continue to grow in the early twenty-first century as Greenland’s climate catches up with the Northern Hemisphere warming trend and the Arctic climate warms according to global climate model predictions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Remote sensing of Greenland ice sheet using multispectral near-infrared and visible radiances

[1] We present the physical basis of and validate a new remote-sensing algorithm that utilizes reflected visible and near-infrared radiation to discriminate between dry and wet snow. When applied to the Moderate Resolution Imaging Spectroradiometer (MODIS) satellite data, our discrimination algorithm has the potential to retrieve melting regions of the ice sheet at a spatial resolution of 0.25 ...

متن کامل

Global Warming and the Greenland Ice Sheet

The Greenland coastal temperatures have followed the early 20th century global warming trend. Since 1940, however, the Greenland coastal stations data have undergone predominantly a cooling trend. At the summit of the Greenland ice sheet the summer average temperature has decreased at the rate of 2.2 ◦C per decade since the beginning of the measurements in 1987. This suggests that the Greenland...

متن کامل

Inter-Annual and Geographical Variations in the Extent of Bare Ice and Dark Ice on the Greenland Ice Sheet Derived from MODIS Satellite Images

Areas of dark ice have appeared on the Greenland ice sheet every summer in recent years. These are likely to have a great impact on the mass balance of the ice sheet because of their low albedo. We report annual and geographical variations in the bare ice and dark ice areas that appeared on the Greenland Ice Sheet from 2000 to 2014 by using MODIS satellite images. The July monthly mean of the e...

متن کامل

Greenland ice sheet melt from MODIS and associated atmospheric variability

Daily June-July melt fraction variations over the Greenland ice sheet (GIS) derived from the Moderate Resolution Imaging Spectroradiometer (MODIS) (2000-2013) are associated with atmospheric blocking forming an omega-shape ridge over the GIS at 500 hPa height. Blocking activity with a range of time scales, from synoptic waves breaking poleward (<5 days) to full-fledged blocks (≥5 days), brings ...

متن کامل

Surface-atmosphere decoupling limits accumulation at Summit, Greenland

Despite rapid melting in the coastal regions of the Greenland Ice Sheet, a significant area (~40%) of the ice sheet rarely experiences surface melting. In these regions, the controls on annual accumulation are poorly constrained owing to surface conditions (for example, surface clouds, blowing snow, and surface inversions), which render moisture flux estimates from myriad approaches (that is, e...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008